11

SR-TR-84-8637

AD-A144 465

F/G 1271

UNCLARSSIFIED




B P
LI UNG ..A.. e
- . " . 5. 3 ) )
LN L [4 --t-.-- . -f.-vf LI PR s fe fe e e e w. .
o AN A ) F A AU AL TR RY AP R E A

NN e

R

.
>
PN
-

EEER

= = — _ M
3 L
<N

1.4
‘.f'fi?ol

m
m
[ 1]

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

hm—m—m__.._u...._..u i w)
— -y'-v.
O 5 -}.
) —_ X
____ Il -.’t

_— e = ..”z.
———] .

bl

£y

’,

v)

’
. [

,_.:A_'.:-

e
i . DU

14
LA
f
v'
4
1
v
4
’,
;
ole’ NN NN L~ KSR i AP A A DAL i v 2 PR ENMNOC O X A
] 8 AR T R | NS0 RGN ap - s Oy sanasnsd o



Vi
“ ‘e 'l.‘g
0%t
‘nt'-“" _(_‘ j

]
)

5] @R
.l. 4.’.1- vl

et 4,
P A

o

5
NN

R s RIS
Vatataty

Ry
A

s
AR

'._
4 :' r
. X
PRI p
PLALILIY | h 35
.

Q)

‘--.L
» ¥

A
feh N

Y
S

.L‘

.« &

COMPUTER SCIENCES
DEPARTMENT

University of Wisconsin-
Madison

AD-A144 465

DTIE FILE copy

A STUDY OF SOME MULTI-GRID IDEAS*

by

David Kamowitz
and
Seymour V. Parter

Computer Sciences Technical Report #545

June 1984




- PP R PR AT I AT P

AR R A A RA T AN IMA RN AL N A D T A et S it o s dhe uan. Soi e, g Lo Al IR A VR AL M el pef e A B S A A g Al AuAnt God Al aad ent osnong
‘e te Tt tatet et Tt ta T e Tt L Tt T et PP EEE P R A e LI A SO . -
«

1
]
4
4
X
o
A STUDY OF SOME MULTI-GRID IDEAS*
by
David Kamowitz]
and 1
Seymour V. Parter
fe |
[
cnisel, »® Samte
o (1)Computer Sciences Department, University of Wisconsin-Madison, Madison, WI.

":. *

:: Supported by the U.S. Air Force Office of Scientific Research under Contract

$% No. AFQSR-82-0275.

2

.'."f.-t \1..4_ . ._- _-v ..r" L .'l .: ... ,: ,.1 L . r$(~ a RSN \r .‘.r ..... -_. ........... ‘ﬁ.-.'.-\ -\ \.-\‘ ‘.\ < o _q“ - -~ -_,:‘ -,.-._- N -



S Sac it 90 A0 DA RACAf e S M DAATR AN Al A /b St MM A S A A A A A A A AR S T A A R RN A
PR A B LI . ~ PN NI e . STt et R O e i R R L, - T A

bty 00
P g

‘- P 2 0 8
t

L Y

4, ¢ b
4

)
l’\.’\

o e
l.'l“

.
ate,

)‘

A STUDY OF SOME MULTI-GRID IDEAS*

N by

tg, David K1T0w1tz | d§‘¢9
Ny an 1 \, \‘\9' e
ol Seymour V. Parter

-k

g4 Ty
PAREAS

g
A 8,

: e
1'3_: o

XA

-
P
s S

Y ‘i"l o

. s(‘-'.hl.{ e

[}
v

-
.

oy BO
AT O

>
At A

L~

-t .
SV

'y h
4 .
. .

PR

T NI CACIE

L)
[

(‘;hldf ’

.,
rd

h)
,
.lx

COnt)
r% %%
S I

NN

@

P A

(])Computer Sciences Department, University of Wisconsin-Madison, Madison, W&I.

X XX A
".4-'

*
Supported by the U.S. Air Force Office of Scientific Research under Contract
No. AFQSR-82-0275.

&+
[N

B

v SN
Vet Tl

0]




l'\""'." L0 A A LRl I B A S

e - > . g AT e T e e, W,
A 25 YA AL AL S It AU S LA LA LA LILNUSL SRS NESLSLSEAE AL QST A CUSLSLELER LTS S

.‘J
1P e A T MR
.'{-: REPORT DOCUMENTATION PAGE
~
.:-.: T3 RErORT SeCURITY (LASSiFCATION b RESTRICTIVE MARKINGS
\ JHUCLASSIITIED
= §2a SeCURITY CLASSIFICATION AULTHORITY 3 DISTRIBUTION / AVAILABILITY OF RePORT
Dpeoved toe o subt T o oy D
o 22 DECLASSIFICATION . DOWNGRADING SCHEDULE i
e amitod.
| 3 PLRFORMING QRGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUWBER(S)
.1 ¥ - - v
y AFOSR-TR- ~4 D roy
rat 152 NAME OF PERFORMING ORGANIZA: ON 6b OFFICZ SYMBOL [ 72 NAME OF MONITORING ORGANIZATION
(If applicable)
-’ University of Wisconsin R N F
N Alr Porne Q78I of S UV T e oh
._‘ ac ADDRLSS (C:ty,. State, and /iP Code) 7b. ADDRESS (City, State, and ZIP Coge)
-y Com;-mter Sciences Department Directorate of lathematica!l nirmat lon
+j Madison WI 53706 sciences, APO3R, Bolling AFB D° 0327
2] 32 NAME OF FUNDING. SPONSORING 8b OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
. ORGANIZATION (if applicable)
SU0IR 0l ArOSR-82~-0275
o] 32 ADCRESS (City, State. and ZiP Code) 10 _SOURCE OF FUNDING NUMBERS
s 2ciine s oo L0ian PROGRAM PROJECT TASK WORK UNIT
BC--2ng wrS Lo 2Uood ELEMENT NO  [NO. NO ACCESSION NO
= 6172028 2304 A3
2] 7T TITL: (include Security Classification)
~ A STUDY O SOME MULTI-GRID IDEAS
N
221 +2 PERSONAL AUTHOR(S)
vid Kamowi 33 _Sevymour V. Parter
.+] '3a TYPE OF REPORT 135. TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 1S PAGE COUNT
"« § Technical FROM T0 June 1984 44
1 ‘6. sUPPLEMENTARY NOTATION
""
;4
\R4 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
A FIELD GROUP SUB-GROUP
.
.
"ol '9 ABSTRACT (Continue on reverse if necessary and identify by block number)
In an effort to understand certain ideas and concepts associated with
- multi-grid iterations we give an in-depth study of a particular simple
. problem. We consider a standard finite-difference system associated with
7 the two-point boundary value problem
Cd
- -(pu')' +bu' +qu=0, ul0) =u(1)=0.
(CONTINUED)
20 DSTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
4 LAuncuassirieorunewited O same as apT. gorlc ystas |-t a5z 1TD
'.‘; 22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) | 22¢c. OFFICE SYMBOL
j-:J CBT Johg P, Thomas, Jr. [0V 767 5026 T
< DD FORM 1473, 34 Mar 83 aPR eaition may be usea until exhausted SECURITY CLASSIFICAT ON OF "HiS PAGE_____
Q All other ed'tions are obsoletb i o T
g 84 08 17 068 e
d.' . R e e v e . .. .. " .
.:‘_;{:;‘A' PO R S ',"'"‘-"."‘-",‘.‘_'%"\',".' NN ARG LA o<

|

) Vo S AL YT W9 W0 o 4 Aata oo 0

- e

RL L L L S

P B

et

. .
N W 0

IR AP

- I

~
A

X

« .
o R}

.
(It}

LY B R |

P




ﬁﬁﬂ.ﬁm T e T W T T S T T TN T T ST T T T T T T T T e T e
ORI DA - : A
R 3
B TEC-RITY L ASSIFICATION OF vii§ PAGE . “1
B ol T
w {ITEM #19, ABSTRAC, CONTINUED: -]
2
“ -
N 2 h . . . . 1
> The operators 1.7, I,,, are "operator" based interpolation and pro-
Jection operators while the smoothers are the damped Jacobi iterations with li
‘:‘ parameter a > 0. 3
I::_: We determine the exact rates of convergence for the “two-grid" scheme ;5
and upper bounds (<1 !) for the multi-grid schemes. Experimental results ’.1
are discussed, . |
4

.
[

s

'r:"'
O oo
.J.k 2

f&*

AR IXAAAAS

SECJRITY CuALS FICATICY 2 T8 50

R RO LA . NS
] R IR R n'\ ' P, YN \_\L\L‘ AL‘.A: ataNa
A Tt A T T A TR I T e e i s EVERA U N T LORERE s




B M AR A S e e A Al L B A Al S e A gt Sk DML A SN JSUE I i ad i - i G AR g M A i Podier s it de Tt fhutt ha et o)
AN G A AN AR e e T T e e R e AR A A S AR R R R s

% 1

*

’ -

5 -

) -

L4 P T B -

d - ’ ’

- .1
K

? -

o ! =4

- R

- .'_1

' ABSTRACT ’

N In an effort to understand certain ideas and concepts associated with 1}

N . Hle ot~ .

f‘ multi-grid iterations we give an in-depth study of a particular simple ;J

f L

K problem. We consider a standard finite-difference system associated with ;3

W~ . Bt

X —the two-point boundary value problem, :ﬁ

1% .

{

» -(pu')' + bu' + qu =0, u(0) =u(l)=0.

)

4

. 2h h " 1] 3 3
The operators Ih , I2h are "operator" based interpolation and pro-
. jection operators while the smoothers are the damped Jacobi iterations with
2 parameter a > 0.
Jhoe Age amer T 7] 7 ’
We determines,the eggFt rates of convergence for the “two-grid" scheme
~

f and upper bounds (<1 !) for the multi-grid schemes. Experimental results

Al

N are discussed.
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:~ 1. Introduction
> The multi-grid approach for the numerical solution of boundary value prob-
:i lems for elliptic partial differential equation is proving itself as one of
EE the fastest and most efficient methods - see [1], (3], [4], [5]1, (6], [17].
15 Moreover, there are a large number of theoretical papers on this subject -
{j see [2], [3], [6], (7], [8], [9], [10], [11], [13], [16]. Nevertheless, it
.;; seems (at least it seems so to these authors) that we are just beginning to
7‘3 understand this powerful idea, In particular, there are questions of: how
‘ do we choose the interpolation and projection operators?, how do we choose
_nq the smoothing operators?, what do we mean when we say smoothing? and ...? '
é% This report is a reflection of our efforts to understand and appreciate
2 the theoretical insights of Frederickson [7], McCormick and Ruge [13],
{j McCormick [14], [15] and Greenbaum [8] and apply those ideas to extend the :
?; explicit convergence rates given by Hackbusch [12, (2.21)], [11] for the very
<

simplest problem

u" = f, u(0) =u(l) =0.

Specifically, we consider the two-point boundary-value problem

3 J o
. . \ l"-"'s"-.-.‘-'ﬁ"" . PRI LS .

(1.1) Lu: = =(pu*)* + b(x)u* +qu=Ff, 0<x <]

(1.2) u(0) =u(1) =0
- where p(x), b(x), q(x) are smooth functions and .
‘.c -
:1; (1.3) p(x) > py >0, q(x)>0. N
¢
; In section 2 we describe a basic approach to multi-grid which is based on
gt the ideas of Frederickson [7], McCormick and Ruge [13] and Greenbaum [8]. :
\d
$4
L]

A g Vi A O AN A A AT N e 2 T e T T e T e D ST




PP AT

-l

TS

.

PLIACDL A PO SRR SO AR CEACA CACIAMEA LA SAL AL A Ak St SN S M Ol MRS A R SRS SRR A
"

-

»

2 -

o

- 4
‘._1

In section 3 we describe a discretization (finite-difference) of the g

problem (1.1), (1.2) and a specific two-grid iterative procedure for ﬁ;

its solution. In section 4 we describe the class of damped Jacobi iJ

"smoothers" and use our knowledge of these schemes and their eigenvectors 'E

to describe the basic spaces: Range I;h = R and AMNullspace Iith =n. -

In section 5 we obtain estimates for the norm decay of a single step in a ;J

o+

two grid scheme for two different norms. In addition we obtain a better g

estimate for the norm decay for all iterative steps beyond the first in Y

both these norms. Interestingly enough, this estimate is the same in both
norms. This latter result is an improvement over the estimates of Hackbusch
(1], D2l

It is well-known that the problem (1.1), (1.2) is equivalent to a
self-adjoint problem. Moreover, the discretization (3.4) is also equivalent
to a symmetric problem. In fact, our multi-grid treatment of this problem
js equivalent to the "same" multi-grid treatment of this symmetric problem.

This equivalence is not needed for the discussion in sections 1-5, However,

as we turn to the extension of a two-grid scheme to a true multi-grid scheme, 2'
we require this information. In section 6 we demonstrate this equivalence. ;
. . ™
In section 7 we describe the n-grid "saw-tooth" multi-grid schemes and give =
a theory (closely related to a theorem of McCormick [14], [15]) which de- ;i
ey
scribes the rates of convergence of this scheme. 1In addition section 7 con- ;#
tains some experimental results. ;j
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. 2. A Basic Theory 4
4 ﬁ The theory presented in this section is based on the work of K
~ K
(* Frederickson [7], McCormick and Ruge [13] and Greenbaum [8]. We consider J
3 1
xé a finite-dimensional linear space Sh and a problem .
R 2.1 LU=f u, fesS ]
£ (2.1) " ¢S, :
1
\ 4
N where |
- L,: S +3S
- h* “h h

Tttt

is a linear, nonsingular operator.

Multi-grid is an iterative method for the solution of this probiem.

» The basic idea is to utilize another finite dimensional space S2h with
¢

AY . .

q (2.2) dim S2h < dim Sy, -

‘N

N . 2h h :

A Hence we require operators Ih . IZh which enable us to effect com-

_{ munication between these spaces. In particular, we have

k: 2h

I‘ . . o

i: (2.3a) Iye s, S2h (projection)

I.‘

h ; -

- (2.3b) IZh' Sop Sh (Interpolation) -
» 2h  .h . . \ . ]
L. where Ih ’ IZh are linear operators. We also require a "smoothing 4
N Iy
® operator Sh and a "coarse grid" operator l'2h’ The smoothing operator 1
fﬁ Sh is an affine operator which has U, the unique solution of (2.1) as

o

?: its only fixed point, That is

¥ |
@ = y

- (2.4a) Shv Ghv + f

-

.

..4

'.Q

L

o'_.f_




where Gh: Sh > Sh is a linear operator and if U 1is the solution of

(2.1), then
(2.4b) S
Finally, the "coarse grid" operator

(2.5) Lop: S

2h® Sop 7”3

2h 2h

is a linear, nonsingular operator taking S, onto itself.

Zh
Let U0 € Sh be a guess for the solution U of (2.1).

0 0

(2.6a) e- =U-U",
(2.6b) U= shu0 ,
(2.6c) S=U-1-= Gh(U-UO) - Gheo ,
(2.6d) r=f-10U-= Lh(U-U) = L€,
(2.6e) R = Iﬁhr .
Solve

A . A "]
(2.7) Ly =R, d.e., € LopR
Set
(2.8) LT IghE LI xghe

UO: = U]

and return to (2.6a).

Set
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Remark: While one might say that we have merely described a two-grid

scheme, the iterative scheme described above does, in fact, describe
"multi-grid" schemes. The point is that the "coarse grid correction"
operator L2h may be a complicated procedure involving more grids.

The work of Frederickson [7], McCormick and Ruge [13] and Greenbaum

[8] suggests we study two fundamental subspaces. These are

i h
(2.9a) R = range of 12h .
(2.9b) n = nullspace of Iith i

In addition we consider a special two grid "coarse grid" operator

ZhL Ih

oh =1

This particular operator is the "Galerkin choice" and is "optimal" in a
certain sense. This fact is emphasized by the following

Lemma 2.1: Consider one iteration as described above by (2.6a)-(2.8) with

(2.11) L, =L

2h 2h °

Suppose € ¢ R, That is, suppose there is a w(2h) ¢ Son and

(2.12) 2= g(h) = Ighw(Zh) .
Then
(2.13a) € = w(2h)
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N
:
\l
: 6
=
{
\' and
-
:,:: U] =U.
'~ Hence, the problem is solved.
RN
ﬁﬁ Proof: From (2.6d) and (2.12) we have
( . h
o r=Le¢gs= LhIZhw(Zh) . :
)
; Thus
4
[ _¢2h _ (¢2h .h
- R=1"r (Ih LhIZh)w(Zh).
. That is,
o
( o
(2.14) R = L,w(2h) . :
- Hence, from (2.7) we have (2.13a). Finally, (2.13b) follows from (2.8) :
and (2.12). ]
jﬂ Now suppose we can write Sh as the direct sum (not necessarily orthog- :
N onal) of Range (Igh) and Nullspace (Iﬁth). That is, every grid function
f w(h) e S, can be uniquely written as
-2 \
. N
- (2.15a) w(h) = 10 w'(2h) + w(h) .‘
, where
) «
2h, 2 :
¢ (2.15b) I Lw(h) =0, ;

R4 Nh P DA A VS O

Let us apply this decomposition to the intermediate error € = €(h) . Then

~

N

’
'
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(2.16) Z(h) = 10wl (2) + .
Thus
1
ro= thghw](Zh) +Le (h)
and
_2h _ c2h choq ]
R = Ih r = [Ih LhIZh]w (2n) .
Using lemma 2.1 we see that
(2.17) o' =T+ 10w (2n)
2h
and hence
1 1 ~ h o
e =U-U =U-U- IZhw (2h) .
That is
e] = e](h) .

Thus, the convergence of the process can be tested by
1 0
e (M1 7]l
where

51(h) € Nullspace(lith) = n

and the norm involved is any norm, The authors mentioned above all dealt

with self-adjoint Lh and assume that

N N e N N e
) ¥ L{L":‘.&.kn.fn.& AL N VRV Y




2h
h

s

- h \T
I = C(IZh) .

5{ In this case it is an easy matter to see that the Range (Igh) and
Nullspace (Iﬁth) are Lh-orthogona1 complements of Sh . In the general
'é case we must assume the decomposition (2.15a), However, it is a simple

= counting argument to see that (2.15a) is valid if L2h is non-singular and
- i) rank Igh = dim SZh

o i1) dim Nullspace ICML > dim S - dim S, .

o Recall that Lemma 2.1 implies that the zero vector is the only vector common

'}f to both subspaces.
L.
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3. The Discrete Problem

Let an integer N > 1 be chosen and set

11
(3.1) h = N1y T T

and let the fine "grid points" be given by

(3.2) xj(h) = jh, § =0,1,2,...,2N+2 .,
We define a difference operator Lh by

(3.32) [y = ol * B~ Vi

where

rpk+ +pk
(3.3b) {8, = |tk 4 q 1,
h2 k
P B
Yk Z T 7h|
L -
Then L, 1is a consistent approximation to the operator

h

L described in (1.1).

We assume h 1is so small that oy > 0, Yy >0 for all k.

We are concerned with the system of linear equations

(LUl =Ff, k=1,2,...,2N+41 ,
(3.4) h™ "k k

u 0

0~ Uonez ©




B 10

We shall solve this system with a particular multi-grid iterative scheme.
o~ Consider a course grid on which we have a mesh spacing of 2h and the

course grid points are given by

N X (2h) = 2hk, Kk = 0,1,2,...,N+1 .

*l

“% We have a space S, of grid functions {Uk(h); k =0,1,...,2N+2} defined

:q_'

A on the fine grid, and we have a space S2h of grid functions
p->- {u (2h); k = 0,1,...,N+1} defined on the coarse grid. Our first step is
:IE to construct the interpolation operator Igh which maps S, into S,
X .

’: 1 L] e L]

o

4 h ]
- T2ni San ™ Sh 3
. R
9 Following the experience of Dendy [4], [5] we choose the following mapping ﬂ
{

T h ]
~2 (3.5a) [1,,U(2h)],, = U, (2h) (common points) 4
- and 2
.J h 1 “j
- < B cmm—— ‘o
3 (3.5b) [IZhU(Zh)]Zk-1 B [aZk-luk-l(Zh) +y2k_]Uk(2h)] (new points). ]
N This choice of "operator" interpolation may be described in the following way: ﬂ
o

2 If the physical point xj(h) of the fine grid is also a physical point of B
N ¥
N the coarse grid, i.e. if j 1is even, say j = 2k, we set Uj(h) = Uk(2h) X
h: to be the same value as the coarse grid function assumed at that point; 3
:! that is, (3.5a) holds. If the physical point xj(h) of the fine grid is A
;ﬁ not a point of the coarse grid, i.e. j 1is odd, say j =2k - 1, we re- "
-: .
> quire that ‘}
¢ h :
N (3.5¢) {Lh[IZhU(Zh)]}Zk-l =0, 3
L ;
: 9-
o, 1




ARREAL AL RN L et At Rk S r i s PC A At AT s e e A e A At AL AC AG A AR ACAS AR RARARL AE AESARENSRERA |

................................

1

We formalize this remark as

Lemma 3.1: Let this interpolation operator Igh be defined by (3.5a),

(3.5b). Then a function U(h) ¢ Sh is in the range of Igh if and only if

[LU(h) 1, g = 0, k= 1,2, 841, .

We now turn to the construction of a projection operator Iﬁh: Sh - S2h .

We define

2h _ %ok Yok

Remark: if b(x) = 0 and the operator L 1is self-adjoint then

% = Ykaa
and we see that

h 4T
(3.7) Iﬁh = c[IZh] .

As we have said in section 2, the relationship (3.7) between Iﬁh and I;h

is the "variational choice" and is frequently recommended for self-adjoint
problems - see [13], [7], [4].
For the purposes of this exposition we take the optimal choice of

"coarse grid correction", i.e.

-‘:J . A - 2h h
o Lon = Lop = T Lalop -
s

o

x

It )

P T S L ST L S S S v | s w . AT TR - )
y 2%, v X ! o - 'J'~

o N Y R R P L NSRS

N e o N Y e
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¢
o Remark: A direct computation shows that
o,

(2),

(3.8a) (L,,u(2m], = '°‘|((2)Uk-1 + B,((Z)Uk Yy

k+1

00y where

| —

_
( (3.88) o2 - ———az"az""]
( , ( .

: | Bak

N —

) (3.8¢) B 8,, -
T k 2k By Bok+

R e

o>, —
¢ (2) _ %KY 2k-1 _Y2k°2k+1:]

2) _ 1Yok 2k+1
/ (3.8d) y(2) o 1172k 2k
{ K AR

N Hence, L2h is again a diagonally dominant three term operator of the
) form (3.3a).

o Now we need only describe the smoothing operator which we do in the

next section,

)
. ‘5.
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4, Jacobi Iterative Schemes

A direct iterative method for the solution of (3.4) is described by

a splitting of the operator Lh . We set

L=M-No

h

Then, given a first guess U0 we define successive iterates by the formula

(4.1) TTRALESETTR N

The convergence of this scheme is determined by the eigenvalue problem
(8.2) AMU = NU .

As is well known, the scheme (4.1) is convergent iff

max|[A] <1,

It is easy to verify that: if (X,¢) are an eigenpair of (4.2) then

(4.3) Lo = (1-1)M¢ .

In this section we are concerned with a particularly simple class of

such iterative methods, the Jacobi methods. We set

(4.4a) M=(1+a)8, a>0,
where
(4.4b) B = diag(B,) .

............

" s .
................
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In this case we may rewrite (4.1) as

Jj+1 jo, 1 J -1

W= 0 4 e BT UY) ]

]

When a = 0 we call this scheme the Jacobi method. When a > 0 we call )

this scheme a damped Jacobi method. In these cases we are able to give )

X .
( a relatively complete discussion of the eigenvalue problem (4.2). We have ‘
\ the following facts. :

i) The method is convergent for a > 0 .

ii) Let a=0. Let (u,$’) be an eigenpair, i.e.

O
ik - Aeiaiaia:

e

UB¢ = (B‘Lh)¢ .

_—~—
| P

Let ¢ be defined by 1

[ f.-‘-'t‘

LR St A L SRS

(4.6) B = (1T,

a
a v v e e

' Then (-u,$> is also an eigenpair. The eigenvalues u are real 1
..’
e and distinct, furthermore: as h -+ 0 the {u} fill out the interval
s
‘.‘_{ [-1,1]. For completeness we repeat the basic relationship between J
¢ and ¢ . Namely,
- R
>, .I
.'A' A -
A (4.7a) if k is odd: ¢k = b .
v": N ]
> (4.7b) if k is even: O = =8 - A
g A
;: Since dim 5, = 2N+1 there is a single eigenvector ¢ associated R
12 L
o with the eigenvalue u = 0 , This eigenvector satisfies h

. -

(4.8) b = 0

OGO P
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For a > 0 there are corresponding eigenpairs (A,¢), (X,&) where

¢ and $ are the eigenfunctions described in (2) and

_ta g _a-u
(4.9) A E- SR F
the eigenpair ¢0,$) corresponds to an eigenpair (A,d) with
I
A - ]+a .
. We now turn to the determination of the three important subspaces
o Range 10, mull 120 pas 12h
D ange 1, ., space 1", Nullspace I 'L, .
N |
‘NN h 2h .
‘,‘;'.:: where the operators Lys I}, are given by (3.5a), (3.5b) and (3.6).
RN
{ n
Lemma 4.1: Let (p,p), (-u,0) be the two eigenpairs described in
\.:'. (ii) above with u # 0. Let
v )
D (4.10) ¢ = [(1+u)¢ - (1-n)¢]
, then ¢ e¢Range Igh . Further, since the vectors ¢ corresponding to
different pairs (u,¢?, (-p,$) are linearly independent this construc-
2y tion provides N 1linearly independent elements of the Range Igh .
o
w7
e Proof: Using (4.3) we have
N -
A.’L
o N
=3 Lpd = [O+) (1-0)8¢ - (1-u) (1+u)Be]
:{\;{ X
2 = (14)(1-)B[6-3] .
$]
:'33 Thus, the Temma follows from Lemma 3.1 which characterizes Range (Igh)
31;_ and from (4.7a), (4.7b). @
§ y
SO
Q-
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Lemma 4.2:
i) For all choices of a > 0, the vector B¢ (associated with u=0)

is an element of Nullspace Iﬁh and hence (4.3) 'implies that 6

is an element of Nullspace Iﬁth.
ii) Let (u,¢), (-u,d) with u # 0 be the two eigenpairs described

above, Let
(4.11a) ¥ = B[(1-p)¢ + (1+u)8] .

Then ¢ 1is an element of Nullspace of Iﬁh and (4.3) implies that

(4.11b) (0+8) € Wullspace of 13N .

Further, since the vectors Y associated with different pairs
(00, “-u,) are linearly independent, we have N linearly
independent elements of this nullspace and N 1linearly independent
vectors of Nullspace Iﬁth. The vectors B¢, 5 provide one more
independent vector of each of these subspaces.

Proof: The result follows from a direct computation using (3.6) and the

defining eigenvalue problem. [ ]

. : :as R h
Corollary: There is a unique decomposition of Sy, into  Range I2h and
Nullspace (Iﬁth.)

Proof: Since Lh is non-singular we have shown that

. h
dim Range 1, >N,

2h

dim Nullspace (Ih Ly) = dim Nullspace (Iﬁh) >N+,

dim S, = 2N +1 ,

h

Thr's the corollary follows from the observation that Lemma 3.1 implies

that these two subspaces have only the zero vector in common. [ ]

.......................
''''''''''''''''''''''''''''''
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5. Some Estimates

Let a > 0. We take as our smoother m applications of the corres-
ponding Jacobi iteration. That is, given U0 = Uo(h) we obtain U

(as in 2.6b) from the formula

A
» ]
l:‘}J

>
a
[ S 'y

(5.1a) Mt = nud 4 f, j=0,1,...m-1,

4

P

(5.1b)

First let us consider the special vector ¢ with its associated eigenvalue

Suppose

NS

and, using Lemma 4.2 we see that

L,e =0.

2h
Ity

‘.\.
a0
‘.‘\
\
; )
o

N~
ﬁ
@
.
; _.?
2
N
@.

Hence, in this case, for any norm

-

(A AN K A

e B & & &
atadatats _. LA

Lo @
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1]
0

: 1r<-<r~r'7<>tr17‘?’F7T‘T‘F‘7‘ﬁ‘f*fﬂ*wi*r‘"'1<TTT'}‘}ﬂ“t-t"\*r*v-h<-~~-'-~-ﬂ-<'e';'~-;}

07

L 33

AR 18

N 1
N (5.2) :F#:=QLW.

( We now consider two norms defined on Sh . Let w, veS 'beof the

h
- form

N

N
)

( ' (5.3a) W

= YA¢, +As+ JAS.
- ja1 973 j=1 973
.;.}
=3 g - PZ* oA
(5.3b) v = C.o. + Co + C.o. .
QJ j=1 93 ja1 979

Define

N0
| U

—~

(wyv)y = JAC, +AC+ JAC,
R 0 53 j=1 43
'4:.

!
o Rd

N o ~ A A
- A.C.(T+u.
(wyv? .Z AjCj(l uj) + AC + _Z 3 J( pJ)

J=] j=1

) . 3
\f.;.fl

1

.l
s, 0,0,

NS
f

2
w2

(w,w)0

p s~

I wi) 2

" % % r gy P2 e v
KRR @ -.‘xﬁ."\’-f 2 ®
"
-~~~
z
-
x
~
m—
1}
0~
>
~
pid
—
'
-
.
o
+
b=
~nN
+
~1
b - 24
~
—
—
+
=
o

Lemma 5.1: Suppose

TN
..' St

Pl s

(5.4) 9 =u-u0=co+dd

)
2
et Attt

M a_ e a o o
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and let e] be defined by the two-grid iteration scheme. Then

] 112 w2 w3
*2. (5.5a) ma.;: T =172 (%,;) (T-p) + (T%) (Hu)]
C, € 0

L] '. ’

SOShT

'y 2
(5.50) s T‘T} = 172|711 + (35 “‘(1+u):l :
. C, € 1

Y o P

’ »
.,\‘-'.":'n

5% 0 T
.
s %
LA

Proof: From (5.4) we see that

’
.

~

T =AM+ dim¢ .

3 s I
~e ¢
L S "'

l;l‘ Iy

Following the theory of section 2, we write (see 2.16)

~

.
. °,

A
- ‘.' -

(5.6) 2= 1hw(2n) + ' (n),

P A

»

. &
»

Y .J“

where

a

L

%J'- -

2
a2
4

1
xﬁthe (h) = 0 .

S

.
phi

We claim that

o

e
' e U

m sm
(5.7a) 1 (2h) = L5 [(14)6-(1-0)3)

Y
2

s
Vo .
B
o

-t m m R
:3:::.- (5.7b) 61 = Cul'u);dl (1+u) [o+3] .

Z;C To verify this we need merely verify that the sum of the right-hand-sides

Ay

| &)

of (5.7a) and (5.7b) is €, and use (4.10) and (4.11b).

.
.
-

o
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LA 3

O e )

>
[ o]

4 4
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»
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)
- Having verified (5.6), (5.7a), (5.7b) we proceed as follows
=
(5.8a) I JHS = 1720cA™(1-p) +dAM(1+11) 12
2
- (5.8b) 1<Ol3 = ¢% + o
~:
4 (5.9) 112 = 1/20e™(1-0) +di™ (1) 12
2 )
5 (5.9b) I3 = -n) + d°(en)
e Thus, a simple argument shows that
12 o a e
b (5.10a) sup ——= = 1/2[A7(1-u)" +27°(1+1)7] ,
~ ” € ”o
{
)
A e'll3 e
.:: (5.10b) sup W = ]/ZEA (]-Ll) +A (]‘ﬂl)] .
:.: € ]
Using the basic formulae (4.9) we obtain
>
-E I E]”g _u+a 2m 2 . ,a=u,2m 2
; ) 3uPW = 1/2|3%7) (1-u) +(~|+—a) (1+u)
0 L
[ 5
A sup W =1/2 ('1+—a) (1-u) +(‘1+—a) (1+u)
1 _
Thus, the lemma is proven, - ]
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Theorem 5.1: In the general case we have

W)
a B q .q
e

gEC

)8
N A

s
s Al A A,

Y
»

2
el
) <

(5.11a
10,

VTN
.

2m 2 ,a-yy2m 2
sup {172 (BE2)M ()8 4 (Bzy2m g,
-1éﬁzﬂ [j]+a (T-u)”™ +(33) 7 (1+u)

PR

2

v et

o +a,2 =My 2
‘3:_ (5.11b) m < swp 1/2[(%) m(l-u) +(?T:) m(“u)]

-]

2 Proof: The Theorem follows immediately from the previous lemma. |

—~

o We observe that (5.11a) is precisely the formula obiained by Hackbusch
2 J [12, (2.21)] in the special case p(x) =1, b(x) =q(x) =0 and a =1.

N To make a complete identification we merely set
R (5.12) ] o= 1-u , (1-0) = —%E .

However, while (5.11a), (5.11b) describe the worst case decay in one multi-
grid iteration in a 2-grid scheme, it does not give the estimate of real

IR interest. From the discussion in the proof of Lemma 5.1 - and (5.7) in

P
R

“

particular - we realize that, even though the constants ¢ and d of (5.4)

LA

£

o

may be arbitrary for so, that is not true for ek, k >1, We have

G

(from (5.7b))

& %

(7

ey
<X

L3

(5.13a) e = o[6+3]
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-5 with

_ ™) + di™(14p)
0 - 2 .

Therefore, following the argument of Lemma 5.1,

(2) _ ST (1-p) +87 (1) 1[6+61

AP

-
PLg
s

PNECUR RS
)

Hence

"
> e

D

T g = et g - 20

.‘q K
el ".1

..
.

g Y,
.

soag s
LN

2
@2 = 112 - M A" (1)1

P
o/

‘y

and for j = 0,1 we have

.. -' Fl
(R

h)

.l
L Bt W

€22

_lem am 2
(5.14) -”—;T)l—lz = ED‘ (T-p) +X7(1+)]° .
J

-

o)

-

+
. .

[

Thus we have proven

Theorem 5.2: In the general case, for j = 0,1 and all k > 1 we have

AN " h‘ iy ol i
-._ ‘ ‘ > cy/

LN

ety 8

| 1¢.m om 2
(5.15) T(Wz.li -]3::112]{1[7\ (T-n) +Xx7(1+)) } .
j SH<

1.

L;

€

Y

A ‘:.‘;’ ®

Remark: The distinction between Hackbusch's result (5.11a) and (5.15) is

P
,

non-trivial for large m. We have, as m » =

[ XA
L ]

®. el

. 0 (1+a) 1

~ (5.16a) ~ = (5.11a)
e, 72 e
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AR R _.'-_~\
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AN while

~ k+1
~3 ”e( )IIJ'_~1+a 1

I (5.16b) K > o (5.14)
.' H e ”J
\-"‘.
i
:ﬁ Thus for k > 1 we have
,.J'.
>

k+1
L k
(5.17) (He] Mle 1) . "3_ = .70M
(ilellly /ey )
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6. Symmetrization

Consider the difference equation (3.4) described by (3.3a), (3.3b).

Let

(6.1) Uy = dek

where the coefficients dk are computed recursively by

(6.2a) d0 =
o
k+1 _
(6.2b) dk+1 dk Yo , k=0,1,...

then (3.4) becomes

=4 d Vi B T Mk Vi T

k
or

d d

k-1 k+1 1
(6.3) T S T % i e AT Bl i

k k K

that is ’
(6.3a) LV o= =0V * BV = YVyar = Ty
where

24

aad

j Py

POV PR

| i i )

B VRN « o
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d
A k-1 _ k-1 . ——
(6.46) ak = ak —a—k_ = ak ak akYk_] Iy
d o
A k+1 _ k+1 _ .
(6.4b) Yk T MeTd T T Ty T ke
Hence
(6.5) = Y

A

and Lh is given by a symmetric operator.

We now turn our attention to the Jacobi iterative schemes of section 4.

We have
(6.6) TRALESTS RN T]T:: B'](f-LhUJ) .

The change of variables (6.1) is conveniently described by

(6.7a) U=0Dv
where
(6.7b) D = diag(d],...,d2N+]) .

With this change of variables the iteration (6.6) becomes

iy 1l (e pyd
v = VY + 1+aD B™' (f LhDV ) .

But, since D and B are both diagornal matrices, we have

] -1

(6.8a) AL B B

royd
f-L, V)

N I

P

[
£

AARAA PN

L l
o ¥
alals

Il e
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. .
* where
:::‘E:: =1 A A A T
_¢. (B.Sb) D f= (f],fz’o.o’f2N+-l) .
‘ E:Z: Since B s also the diagonal of Eh’ (6.8) is precisely the same
;ZE:_Z Jacobi iterative scheme for modified symmetric equations.
\' Now let us study the effect of this transformation on the two-grid
::_. jterative scheme. We compute
o
A =Tryh
S D, [IZhqu .
2.
:..::j:: Imagine U(Zh)k = d2kv(2h)k is given in S2h . Then, from (3.5a)
o
’S) (6.9a) d'][Ih u(2n)l,, = v(2h)
: . 2kt 2n M ok k *
(
o
> (6.9b) 2k 2[12hU(2h)]2k , = V(2h), ;-
i
:;:I: Thus (3.5b) yields
)
o 1 o 4 (2h) (2h)
-\ -
3 dok-1{T2nY(2N) 15 g = BZk By o2k-1%2k-1%2k-2 k-1 Y21 IRL S
)
2
.r‘ ’
Voo = gLy ¥(2h), g+ qVi2M) ]
2k=1
o
C ol
2_ Thus, with this change of variables the mapping Igh of our original
e, a
X unsymmetric problem becomes Igh’ the appropriate mapping associated
4-":
¢ with the new symmetric problem,
4
®.
e
e
e
"1
'b-"::
AN
NSRS
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Finally, let us consider

ARG
P AP N

“1p.2h
dgy [Ty ()],

-

“ A straight forward calculation verifies that

PRSI SR W L S DN N Y Y

»
2o

~ A

5
Vyp_q(h) +V 2 2h
2k+1

N “1e2h o 10 %h
X daxllh Yl = 2T 2k(n) * Varer?

ot &4

XA
e

Thus, following the remarks of section 3 [see (3.7)] we see that

:'A".n

[a=112h] ~
LA

»
whivheA

the appropriate projection operator,

o~

- For our purposes, the major significance of these calculations js that ]

LI |
a"a
L

the "1" norm introduced in section 5 is the "operator norm" for the

2.0,

symmetric problem. Hence, we have a norm which is well-defined on all :

spaces Sh_ . 3
J

s g )
B A
S X )
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7. Multi-Grid and Experimental Results

The results of the previous sections, and Theorem 5.1 in particular,
provide exact estimates of the decay of the error (in two norms) in one
iteration of a 2-grid scheme - in the worst case.

Since Lon, is again a three term (diagonally dominant) operator of
the form (3.3a) - and given specifically by (3.8) - we may apply our
multi-grid approach inductively as follows: Assume that the n-grid multi-
grid scheme based on "smoothing" with m applications of the damped Jacobi
iteration with parameter a is defined. Suppose

i, n>2,

(7.1a) o 2

where H is of the form

1
(7.1b) e

We wish to solve (3.4) on the h-grid. jterative scheme is given by the
following inductive description,

(1.) On the h-grid (h =2""H):

(a) Let u% be chosen.-
(b) Apply the demped Jacobi (with parameter a) iteration
m times to obtain U,
(¢} Form r(h) = f - LhU.
(2.) Transfer Information:

h

(a) Set r(2n) = Iﬁ

r(h)
(3.) On the 2h grid:

(a) Consider the problem

A ~

Loy (2h) = r(2n).
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(b if 2h = H, solve exactly.

(c) if 2h < H, set U°(2h) = 0 and apply the
n-grid iterative scheme (based on smoothing
with m applications of the damped Jacobi
iteration with parameter a). Llet U](Zh)

be the result of this step.

(4.) Transfer Information:

(a) U =0+ I'Z‘hu‘(zh) i

() ul >0,

Return to 1(b).
In the multi-grid jargon this is the so-called slash or sawtooth cycle

which we indicate schematically as:

h

2:\\\\0 m "smoothings" ///’
" h 3 "

4h\\\\o m "“smoothings o’//,4h

"

Note: There are no smoothing steps during the transfers from coarse to fine
grids.
McCormick [14], [15], calls such a multigrid cycle a M\h cycle. When
the smoothing occurs only on the way "up" the cycle and the errors are

merely restricted on the fine to coarse transfers, he calls the cycle a M/h
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cycle. For the symmetric case, using Richardson's iteration, see [14],

he shows that

In discussing the symmetric Nyh cycle he obtains the following estimate.

Let

(7.3a) eo = no + I;hwo .

Suppose o, 0 < a <1 satisfies

0,2 0,2 h 0,2 0
(7.3b) llGe ”] < afln ”] +“12hw ”1 s ¥Yeo,
then
(7.4a) Il < 0%,
that is:
1 1
(7.4b) el = Hu-u'ly < a0, .

Since our Jacobi iteration is not all that different than Richardson's
iteration it is not surprising that a similar result holds in our case.
Indeed, if one applies his argument to our multigrid cycle, i.e. the M\h
cycle, one gets the following result.

Lemma 7.1: Consider the symmetric case and suppose

(7.5) ||GI|].£ 1.
Let
(7.6a) Geo =g=n+ I;hw

Lt T A T (Rt N N et e
Calatalats Ta il tn et Tty
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Suppose &, 0 < & <1 satisfies

2 ~aneh 2 an 02
(7.6b) Inlly + el ly < alleliy-
Then
.
(7.7) IMplly <a” -

Proof: The proof proceeds by induction. Since we use an exact solver

on the coarsest grid,
(7.8a) M1l =0 < &% .

Assume that

~Js
(7.8b) iMopthy < a®,
that is:
(7.8¢) I My pp(2h)-u(2n) [} < &% [lw(zh) | -
Then

12 h
(7.9) e T = inllF + 115, ppumo) 12

Because this is a symmetric problem we know that

(7.10a) Ivilg = oL,

and that

.....
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h - (h _ 2h, .h
(7.10b) I1vlly = <Ippvs LhIZhv) = (v, YT o)
= vy, Lyv) = yllvil?
9 2h Y 'l .
Therefore,
142 2 2
"5 “1 = “n“] + YIIM\Zhw'wH] .
By the inductive hypotheses (7.8b) we have
12 2 A 2 2 ~n.h 2
a0l P Il ¢ vallol? = Inl? +aniul?.
Note: In (7.10b) and in this calculation the symbols ||m||1 and lllghmﬂl

refer to the designated norms on the spaces S2h and Sh‘
By the basic inequality (7.6b) we have
12 2 , ~nq¢h 2 _ o~ 0,2
Fe' 1 < finlld + &) wli? < all 02

which proves the Lemma.
Since the proof of this lemma is immediate once one understands the

proof of McCormick's lemma 2.2 of [15] one would expect that
(7.12) a=a.

Indeed, this is the case. Direct but messy calculations based on the results

of section 5 yield

;({‘—;g) <1+u)+70{1—§) (1) - (Ha) (Ha)

1-‘7(-‘,-‘;—3) (1-u) - (‘{1‘;‘) (1+n)

== SUp
(7.13) a=a 1<

R S St 5 & R S B B L T R S O TR SR
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L

Z::ZI Moreover, for all choices of a and m, the supremum is attained at u =1.
\'.

EI The corresponding values of a;’ are displayed in the following table:

{

N

X Bounds on the Convergence Rate

i
" m\a .333 .5 .667 .75 1 1.333

2 1 .633 .577 .561 .561 .577 .614

o 2 .435 .408 417 .424 .447 .475

;Z: 3 .336 .335 .349 .357 .378 .403

U 4 .283 .293 .307 .314 .333 .357

>

::';: In view of the results of section 6 which demonstrate the complete equiva-
E:: lence of our problem to a related symmetric problem, these upper bounds apply
{ in our case.

2%

:‘_:: However the estimate cLls = m!s is only an upper bound for the rate of
i convergence of the multigrid iterative scheme. In order to complete our in-
’ l‘ vestigation we have undertaken an experimental project.

-;_ A computer program was written with the following capabilities: The user
s
.:«; supplies
p

o

o p(x), b(x), q(x), f(x), m, a, n, and
:f‘_f M= (%) - 1 = (number of points on the finest grid),
S
L
[<T, where p(x), b(x), q(x), f(x) are the coefficients of the problems (1.1),
:::: (1.2) and
L=,

?.:: m = number of applications of the damped Jacobi iteration,

.' a = parameter of the damped Jacobi iteration
SR
;j,' n = # of grid levels.

o

"; The user also supplies an initial guess U0 and a tolerance E.
:ﬁ

L4
‘ G VG G I A o S e T T g Rt v S P TR D A T AT g A A I I Y
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The program then executes multi-grid iterations until the 21 norm
[see (7.14a)] of the residual is below the indicated tolerance £E. The
program is run in an interactive fashion which allows the user to change
the parameters M, m, a and n.

The experiments reported here were run on the VAX 780 in both single
and double precision arithmetic (approximately sixteen decimal digits of
accuracy). The single precision results were qualitatively similar to the
double precision results, however, for increased accuracy, the double pre-

cision results are reported here.

For our present purposes the basic program was modified to enable us
to estimate the "rates of convergence" of the multi-grid iteration. For
each test problem we used a known solution u(x) of the boundary value
problem (1.1), (1.2). Then we computed the exact solution u(x,h) of

the algebraic system (2.4). Then using two norms

(7.14a) Fully = nI lugl

(7.14b) lluH] (u,Lhu)%

we computed the norms of the error (u-u1) at each iteration. The rate of

¢%

convergence was measured by computing

(7.15) —-u—f—Hl— =0

lle™ 1l

at each iteration i = 1,2,3....

4

Shhh

Y
TR

)

| 20 r
'.';.'.-.‘:\‘?. o
AN

To check that the program was working correctly a number of measures

T
Iy
Pl

were taken. The most simplistic was to carry out some of the iterations

A

£ X' ¢ FEAAN '.L'L(l‘.'

by hand and to compare the hand computed calculations to the iterates
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generated by the machine. In addition, since the discretization error
is 0(h2), it is not unreasonable to expect that halving the step size

should reduce the final error in u by a factor of four. This property
2+1

was checked and found to be true. One of the requirements for Iz2 h
27h
is that
L
(7.16) L, 12,0y =0
2% 2y
2k-1

(by Temma 2.1).
After each coarse to fine grid transfer, formula (7.16) was computed and
checked. Finally, from (5.7b) one sees that the error, eZk(h), on the
even points of the coarsest grid should be zero. This requirement was
also verified after each iteration.

The test problems are best described by giving the choices of p(x),
b(x), q(x) and u(x), the true solution of the differential equation
(1.1), (1.2) (which determines f(x)).

As a basic case we took
(7.17a) p(x) =1, q(x) =b(x) =0 and u(x) =0.

This test was merely to be sure the program worked on this simple case.
In addition there were six other problems based on two additional sets
of coefficients p(x), b(x), q(x) and three "solutions" wu(x). These

are

(7.17b) p(x) =1 + % sin 4mx, b(x) =1 + x, q(x) = (sin Snx)2

e, b(x) =1+ xz, q(x) = (1-x)ex/2.

(7.17¢) p(x)
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The "solutions" were

(7.18a) up(x) = x(e-e") ,
(7.18b) uz(x) = xs/z(l-x) ,
(7.18¢c) u3(x) = sin(14nx) .

For each problem, test runs were made with a variety of initial guesses.
After all, the point was to obtain the worst rate of convergence., Each

initial guess consisted of a smooth component

uz = 20 sin ﬁ%% where M is the number of points on
the finest grid

and a rough component. The rough component was chosen in various ways
in order to have different compositions on the coarser grids. The rough
components of the initial guesses are best described schematically, by

setting
- S
U =u 406k

where |6k| = 1, and the sign of Gk follows the following patterns:

Initial Guess Pattern for Gk
A R R L T i e
B E IR TR TR ST T S S S
(7.19) c T
D + +t 4+t eee ettt
E R A R

’ '. q \" rhum‘m.muwa.\

P

.
.'n. -A'-_.\LA.L. UL S
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Runs were made with a, the damped Jacobi parameter, equal to
.333, .5, .667, .75, 1.0, 1.333, while m, the number of smoothing
iterations, ran from one to four and the number of grid layers varied from
two to five. For each test problem, the program stopped when the discrete

2, norm of the residual vector was less than .00005. The most recently

1
computed rate of convergence.

leeinar ! 2,

I €¢inat-1 ”z]

was computed and recorded in Tables III-VI.

The theoretical rate for a two grid iteration scheme was computed from

Theorem 5.1 and Thearem 5.2 by solying for the maximum of

2m 2m
F(u) %[[—,‘%%] (1-u) + [34] (1+u)] BRI

and
_ V] [u+a m a-u m 2
Filu) = 7 [—Ha) (1-u) + [_Ha] ()} -1 2wzl

using Newton's method. Table I exhibits (max F(u));i (a predicted rate of

convergence) as a function of m and a. The value of u at which the

maximum of F(u) occurred can be found in Table I'
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W Table I

¥ Predicted Rate Based on F(u)

\

- ma  .333  .500  .667  .750  1.000  1.333 -]
'f 1 .500 .333 .400 .429 .500 .57 };
= 2 260  .248 .26 .268 .289 .331 4
} 3 .200 .206 217 .223 .238 .258 ﬁi
> 4 a7 .180 .190 .195 .208 .225 :
" '_-
N Table I J
‘. Damped Jacobi Parameter-y k
- "
- m\a .333 .500 .667 .750 1.000 1.333 t
{ 1 1 0 0 0 0 0 !
: 2 .883 .707 .666 .650 577 .370
b 3 .833 .786 .762 .750 714 .661

N 4 .857 .833 .814 .811 777 741
j Table II exhibits (max F-I(u));i (a better rate of convergence) as a function
;:: of m and a. The value of u at which the maximum of F](u) occurred
can be found in Table II'.
Table II

! Predicted Rate Based on F](u)

; ma .333 .500 .667 .750 1.000 1.333
,: 1 .500 .333 .400 .429 .500 572
{ 2 .250 N .160 .184 .250 .326
. 3 .125 .078 .088 .093 .125 .187
k. 4 068  .062  .068  .072 .083 .109
H
T R IO TR IO R N A O N IR P 0 D DR 0 R T Y TR TR 8 S L e A A




Table II'
Damped Jacobi Parameter-u

.500 .667 .750 1.000

0 0 0 0

0 0 0 0
.612 577 .530 0
.707 .667 .650

Tables III through VI contain the worst rate of convergence found

experimentally as measured in the 21 norm,
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Table III
Worst case, 2-grids
ma  .333 5 .667 .75 1.0
1 .a99(a)  335(b) .a00(P) .429(b) .500(P)
2 25060 ) a0 1galP)  554(b)
3 a2a(€) g7s(b) 0s7{d)  ggsle) .125(b)
4 063 oe2'T 0esf®) oM ggafe)
Table IV
Worst case, 3-grids
ma .333 .5 .667 .75 1.0
1 .a99(€)  333(b) .400¢P) 429(0)  5og(b)
2 2500¢)  1es(9)  q92(9)  p10(9) p65(0)
3 a2afe) ggglk) o qpglk) o gpa(k) o 70(e)
4 08700)  g70(3)  ggr(3)  gga(d)  30(K)
Table V
Worst case, 4-grids
ma  .333 .5 .667 .75 1.0
1 .a99(c)  333(b) .a0000)  g29(B)  ggq(b)
2 .250(€)  qg0(m) 20108 21203 y69(a)
3 a2a{e)  qz(m a3l s 7000
4 00s(H) ggs() g0alt) () i)
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Table VI

*
»

s
"2%s
.
'

Worst case, 5-grids

By ¢, s,
+

g\

o m\a .333 .5 .667 .75 1.0 1.333
4

.a99(c) .333(0) 40000)  gpg(b)  540(b) .571(b)
PG AP CORP YL C) B YPACO BEPYIN () e )
246D q3a00)  qag(0)  qagfa)  ggs(k) 56K
008 00g(P)  q0alK) k) (k) ge(k)

¢
-
2w NN -

N The letters in the above tables correspond to the choices of coefficients,
L "solutions", and patterns for rough components in the initial guess [see

N}S (7.17), (7.18), (7.19)] displayed in Table VII.

{ Concluding Remarks

o As can be seen from the computational results, no particular choice of

N problem or initial guess always resulted in giving the worst case. Moreover,

.57 s an upper bound on the rate of convergence of the

it appears that a
o muitigrid scheme but does not yield the exact rate of convergence. Notice
that there seems to be no degradation for m = 1. However, as m increases
we find some degradation in the rate of convergence. But, it appears to be
b b

A
=0 .

5
'l ’l

quite less than «
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L Table VII
x
~
) Worst Case Problems
.::4
b Pattern for
:Zt: Problem Coefficients "Solution" o in initial guess
{ ) a 7.17b x(e-ex) B
.‘.\ .
o b 7.17c sin(14mx) B
o c 7.17b x>/ (1-x) c
o
d 7.17¢ sin(14mx) C
L
o e 7.17b x(e-e*) c
Y f 7.17¢ x(e-eX) D
L
( g 7.17a 0 D
- h 7.17c x(e-e) D
o .
R i 7.17¢ sin(14mx) E
v
"' . i 7.17a 0 E
2 k 7.17b x(e-eX) E
d."
"7 % 7.17¢ x3/2(1-x) A
<
5 m 7.17a 0 E
n 7.17¢ x/2(1-x) c
0 7.17b x(e-e*) A
3 p 7.17¢ x(e-e* A
o )
e q 7.17b sin(14mx) A
<.
I::
3
>
P
¥
)
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